Proyecto
Salón Hogar
Ecuaciones
Trigonometricas
Una
ecuación trigonométrica es aquella ecuación en la que aparecen una o más
funciones trigonométricas. En las ecuaciones trigonométricas la incógnita es
el ángulo común de las funciones trigonométricas. No puede especificarse un
método general que permita resolver cualquier ecuación trigonométrica; sin
embargo, un procedimiento efectivo para solucionar un gran número de éstas
consiste en transformar, usando principalmente las identidades
trigonométricas, todas las funciones que aparecen allí en una sola función
(es recomendable pasarlas todas a senos o cosenos). Una vez expresada la
ecuación en términos de una sola función trigonométrica, se aplican los
pasos usuales en la solución de ecuaciones algebraicas para despejar la
función; por último, se resuelve la parte trigonométrica, es decir,
conociendo el valor de la función trigonométrica de un ángulo hay que pasar
a determinar cuál es ese ángulo.
Nota: en las
soluciones pueden aparecer valores extraños (debido a la manipulación de las
ecuaciones al tratar de reducirlas), por ejemplo: nos puede resultar un cosx
= 2, el que debemos descartar, obviamente, pues el codominio del coseno se
limita a [-1, 1]. También, debemos verificar todas las respuestas obtenidas
y aceptar sólo aquellas que satisfacen la ecuación original.
Como las funciones
trigonométricas repiten su valor y signo en dos de los cuadrantes, hay que
tener presente que siempre habrá por lo menos dos ángulos distintos en la
solución de una ecuación trigonométrica de la forma trix = a
(donde tri: es una de las seis funciones trigonométricas y a: número
cualquiera en el codominio de la función). Además, debido a que cuando el
lado terminal de un ángulo realiza un giro completo se genera otro ángulo
equivalente, es necesario añadir a las soluciones obtenidas un múltiplo de
360°, esto es, k360°, y k es un entero.
Ejemplo
ilustrativo1:
Ejemplo
ilustrativo2:
Ejemplo
ilustrativo3:
Ejercicios
propuestos
Encuentre
todas las soluciones (raíces) de las siguientes ecuaciones:
|
|
|
|
|
|
|
WWW.PROYECTOSALONHOGAR.COM