S k i l l
 i n
A L G E B R A

Table of Contents | Home

19

THE DIFFERENCE
OF TWO SQUARES

Summary of Multiplying/Factoring

2nd level:

The form (a + b)(ab)


WHEN THE SUM of two numbers multiplies their difference --

(a + b)(ab)

-- then the product is the difference of their squares:

(a + b)(ab) = a² − b²

For, the like terms will cancel. (Lesson 16.)

Symmetrically, the difference of two squares can be factored:

x² − 25 = (x + 5)(x − 5)

x² is the square of x.  25 is the square of 5.

Example 1.   Multiply  (x3 + 2)(x3 − 2).

Solution.   Recognize the form:  (a + b)(ab).  The product will be the difference of two squares:

(x3 + 2)(x3 − 2) = x6 − 4

x6 is the square of x3.  4 is the square of 2.

Problem 1.   Write only final product..

   a)   (x + 9)(x − 9) = x² − 81   b)   (y + z)(yz= y² − z²
 
   c)   (6x − 1)(6x + 1) = 36x² − 1   d)   (3y + 7)(3y − 7) = 9y² − 49
 
   e)   (x3 − 8)(x3 + 8) = x6 − 64   f)   (xy + 10)(xy − 10) = x²y² − 100
 
  g)   (xy² − z3)(xy² + z3= x²y4z6   h)   (xn + ym)(xnym= x2ny2m

Problem 2.   Factor.

   a)   x² − 100  = (x + 10)(x − 10)   b)   y² − 1 = (y + 1)(y − 1)
 
   c)   1 − 4z² = (1 + 2z)(1 − 2z)   d)   25m² − 9n² = (5m + 3n)(5m − 3n)
 
   e)   x6 − 36 = (x3 + 6)(x3 − 6)   f)   y4 − 144  = (y² + 12)(y² − 12)
 
   g)   x8y10 = (x4 + y5) (x4y5)   h)   x2n − 1 = (xn + 1)(xn − 1)

Problem 3.   Factor completely.

  a)  x4y4 = (x² + y²)(x² − y²)
 
  = (x² + y²)(x + y)(xy)
  b)  1 − z8 = (1 + z4)(1 − z4)
 
  = (1 + z4)(1 + z²)(1 − z²)
 
 
  = (1 + z4)(1 + z²)(1 + z)(1 − z)

Problem 4.    Completely factor each of the following.  First remove a common factor.  Then factor the difference of two squares.

a)  xy² − xz²  = x(y² − z²) = x(y + z)(yz)

b)  8x² − 72  = 8(x² − 9) = 8(x + 3)(x − 3)

c)  64zz3  = z(64 − z²) = z(8 + z)(8 − z)

d)  rs3r3s  = rs(s² − r²) = rs(s + r)(sr)

e)  32m²n − 50n3  = 2n(16m² − 25n²) = 2n(4m + 5n)(4m − 5n)

f)  5x4y5 − 5y5  = 5y5(x4 − 1) = 5y5(x² + 1)(x + 1)(x − 1)

The Difference of Two Squares completes our study of products of binomials.  Those products come up so often that the student should be able to recognize and apply each form.  

Summary of Multiplying/Factoring

In summary, here are the four forms of Multiplying/Factoring that characterize algebra.

   
 
1.  Common Factor   2(a + b) = 2a + 2b
 
2.  Quadratic Trinomial   (x + 2)(x + 3) = x² + 5x + 6
 
3.  Perfect Square Trinomial   (x − 5)² = x² − 10x + 25
 
4.  The Difference of Two Squares   (x + 5)(x − 5) = x² − 25
 
   

Problem 5.   Distinguish each form, and write only the final product.

a)  (x − 3)²  = x² − 6x + 9.   Perfect square trinomial.

b)  (x + 3)(x − 3)  = x² − 9.   The difference of two squares.

c)  (x − 3)(x + 5)  = x² + 2x − 15.   Quadratic trinomial.

d)  (2x − 5)(2x + 5)  = 4x² − 25.   The difference of two squares.

e)  (2x − 5)²  = 4x² − 20x + 25.   Perfect square trinomial.

f)  (2x − 5)(2x + 1)  = 4x² − 8x − 5.    Quadratic trinomial.

Problem 6.   Factor.  (What form is it?  Is there a common factor?  Is it the difference of two squares? .  .  . )

a)  6x − 18  = 6(x − 3).   Common factor.

b)  x6 + x5 + x4 + x3  = x3(x3 + x² + x + 1).   Common factor.

c)  x² − 36  = (x + 6)(x − 6).   The difference of two squares.

d)  x² − 12x + 36  = (x − 6)².   Perfect square trinomial.

e)  x² − 6x + 5  = (x − 5)(x − 1).   Quadratic trinomial.

f)  x² − x − 12  = (x − 4)(x + 3)

g)  64x² − 1  = (8x + 1)(8x − 1)

h)  5x² − 7x − 6  = (5x + 3)(x − 2)

i)  4x5 + 20x4 + 24x3  = 4x3(x² + 5x + 6) = 4x3(x + 3)(x + 2)

2nd Level


Next Lesson:  Algebraic fractions


Table of Contents | Home


Please make a donation to keep TheMathPage online.
Even $1 will help.


Copyright © 2001-2007 Lawrence Spector

Questions or comments?

E-mail:  themathpage@nyc.rr.com