Topics in

P R E C A L C U L U S

Table of Contents | Home

1

The Formal Rules of Algebra


ALGEBRA  is a method of written calculations.  A formal rule shows how an expression written in one form may be rewritten in a different form.  For example,

a + b = b + a.

This means that if we see something that looks like this

a + b

then we are allowed to rewrite it so that it looks like this

b + a.

In a formal rule, the = sign means  "may be rewritten as"  or  "may be replaced by."  For, what is a calculation but replacing one set of symbols with another?  In arithmetic, we may replace  '2 + 2'  with  '4.'  In algebra, we may replace  'a + b'  with  'b + a.'

If p and q are statements (equations), then a rule

If p, then q,

or

p implies q,

means:  We may replace statement p with statement q.  For example,

x + a = b  implies  x = b − a.

This means that we may replace the statement  'x + a = b'  with the statement  'x = b − a.'

Algebra depends on how things look.  We can say, then, that algebra is a system of formal rules.  The following are what we are permitted to write.

(See the complete course, Skill in Algebra.)

11.  The axioms of "equals"

a = a Identity
 
If a = b, then b = a. Symmetry
 
If a = b  and  b = c, then a = c.   Transitivity

These are the "rules" that govern the use of the = sign.

12.  The commutative rules of addition and multiplication

a + b  =  b + a
 
a· b  =  b· a

13.  The identity elements of addition and multiplication:

3.  0 and 1

a + 0 = 0 + a = a

a· 1 = 1· a = a

Thus, if we "operate" on a number with an identity element,
it returns that number unchanged.

14.  The additive inverse of a:  −a

a + (−a) = −a + a = 0

The "inverse" of a number undoes what the number does.
For example, if you start with 5 and add 2, then to get back to 5 you must add −2.  Adding 2 + (−2) is then the same as adding 0 -- which is the identity.

  15.  The multiplicative inverse or reciprocal of  a,
  5.    symbolized as  1
a
 (a 0)
a·  1
a
  =   1
a
· a   =  1

Two numbers are called reciprocals of one another if their product is 1.
Thus, 1/a symbolizes that number which, when multiplied by a, produces 1.

  The reciprocal of   p
q
 is  q
p
.

16.  The algebraic definition of subtraction

ab = a + (−b)

Subtraction, in algebra, is defined as addition of the inverse.

17.  The algebraic definition of division

a
b
  =   a·  1
b

Division, in algebra, is defined as multiplication by the reciprocal.
Hence, algebra has two fundamental operations: addition and multiplication.

18.  The inverse of the inverse

−(−a) = a

19.  The relationship of  ba  to  ab

ba = −(ab)

ba is the negative of ab.

10.  The Rule of Signs for multiplication, division, and
10.  fractions

a(−b) = −ab.    (−a)b = −ab.    (−a)(−b) = ab.

   a
b
 = −  a
b
. a
  b
 = −  a
b
. a
b
 =  a
b
.

"Like signs produce a positive number; unlike signs, a negative number."

11.  Rules for 0

a· 0 = 0· a = 0

If a 0, then

0
a
  =  0.   a
0
  =  No value.   0
0
  =  Any number.

12.  Multiplying/Factoring

m(a + b) = ma + mb The distributive rule/
  Common factor
 
(xa)(xb) = x² − (a + b)x + ab  
  Quadratic trinomial
 
(a ± b)² = a² ± 2ab + b² Perfect square trinomial
 
(a + b)(ab) = a² − b² The difference of
  two squares
 
(a ± b)(a² ab + b²) = a³ ± b³     The sum or difference of
  two cubes

13.  The same operation on both sides of an equation

If      If   
 
  a  =  b,   a  =  b,
 
then      then   
 
        a + c  =  b + c.   ac  =  bc.

We may add the same number to both sides of an equation; we may multiply both sides by the same number.

14.  Change of sign on both sides of an equation

If    
 
  a  =  b,
 
then    
 
  a  =  b.

We may change every sign on both sides of an equation.

15.  Change of sign on both sides of an inequality: 
15.  Change of sense

If    
 
  a  <  b,
 
then    
 
  a  >  b.

When we change the signs on both sides of an inequality, we must change the sense of the inequality.

16.  The Four Forms of equations corresponding to the
16.  Four Operations and their inverses

If     If  
 
    x + a  =  b,         xa  =  b,
 
then     then  
  x  =  ba.     x  =  a + b.
***
If     If  
 
    ax  =  b,        x
   a
 =  b,
 
then     then  
  x  =  b
a
  x  =  ab.

See  Skill in Algebra, Lesson 9.

17.  Change of sense when solving an inequality

If    
 
  ax  < b,    
 
then    
 
  x  > − b
a
.

18.  Absolute value

If  |x| = b,  then  x = b  or  x = −b.

If  |x| < b,  then  −b < x < b.

If  |x| > b,  then  x > b  or  x < −b.

19.  The principle of equivalent fractions

x
y
 =  ax
ay
 
and symmetrically,
ax
ay
 =  x
y

Both the numerator and denominator may be multiplied by the same factor; both may be divided by the same factor.

20.  Multiplication of fractions

a
b
·    c
d
 =   ac
bd
 
a ·    c
d
 =   ac
d

21.  Division of fractions (Complex fractions)

Division is multiplication by the reciprocal.

22.  Addition of fractions

a
c
 +  b
c
 =  a + b
   c
Same denominator
 
a
b
 +   c
d
 =  ad + bc
   bd
Different denominators with
no common factors
 
 a 
bc
 +   e 
cd
 =  ad + be
   bcd
Different denominators with
common factors

The common denominator is the LCM of denominators.

23.  The rules of exponents

aman  =  am+n   Multiplying or dividing
 
am
an 
 =  am−n   powers of the same base
 
 
(ab)n  =  a1nbn   Power of a product of factors
 
 
(am)n  =  amn   Power of a power

24.  The definition of a negative exponent

an  =   1 
an

25.  The definition of exponent 0

a0 = 1

26.  The definition of the square root radical

The square root radical squared produces the radicand.

27.  Equations of the form  a² = b

If
a²  =  b,
 
then
a  =  ±.

28.  Multiplying/Factoring radicals

 = 
 
and symmetrically,
 
 = 

29.  The definition of the nth root

30.  The definition of a rational exponent

It is more skillfull to take the root first.

31.  The laws of logarithms

log xy  =  log x  +  log y.

log  x
y
  =  log x  −  log y.

log xn  =  n log x.

log 1 = 0.   logbb = 1.

32.  The definition of the complex unit i

i ² = −1


Next Topic:  Rational and irrational numbers


Table of Contents | Home


Please make a donation to keep TheMathPage online.
Even $1 will help.


Copyright © 2001-2007 Lawrence Spector

Questions or comments?

E-mail:  themathpage@nyc.rr.com