Table of Contents | Home

Linear equations:  Section 2

Back to Section 1

Canceling

x's on both sides

Simple fractional equations

Canceling

If equal terms appear on both sides of an equation,
they may be "canceled."

x + b + d  = c + d.

d appears on both sides.  Therefore, it may be canceled:

x + b  = c.

For, we may imagine subtracting d from both sides.

Finally, on solving for x:

x  = cb.

Problem 17.   Solve for x :

x² + x − 5  =  x² − 3

To see the answer, pass your mouse from left to right
over the colored area.
To cover the answer again, click "Refresh" ("Reload").
Do the problem yourself first!

Cancel the x²'s:

x − 5  =  −3
 
x  =  −3 + 5 = 2.

Problem 18.   Solve for x :

xa + b  =  a + b + c

Cancel the b's but not the a's.  On the left is −a, but on the right is +a.  They are not equal.

Transpose −a:

x  =  a + a + c
 
x  =  2a + c

x's on both sides

Example 3.   Solve for x :

4x − 3 = 2x − 9
 
      1.  Transpose the x's to the left and the numbers to the right:
 
4x − 2x = −9 + 3
 
      2.  Collect like terms, and solve:
 
2x = −6
 
x = −3

Problem 19.   Solve for x :

15 + x = 7 + 5x
 
x − 5x = 7 − 15
 
−4x = −8
 
x = 2

Problem 20.   Solve for x :

1.25x − 6 = x  
 
1.25xx = 6  
 
(1.25 − 1)x = 6   On combining the like terms
on the left.
.25 x = 6  
 
x = 24.   On multiplying both sides
by 4.

Problem 21.   Remove parentheses, add like terms, and solve for x :

(8x − 2) + (3 − 5x) = (2x − 1) − (x − 3)
 
8x − 2 + 3 − 5x = 2x − 1 − x + 3
 
3x + 1 = x + 2
 
3xx = 2 − 1
 
2x = 1
 
x = 1
2

Simple fractional equations

   Example 4.        x
2
  =  4

Since 2 divides on the left, it will multiply on the right:

x = 2· 4    
 
  = 8

Problem 22.   Solve for x :

x
5  
= 3
 
x = 15
 
x = −15
Problem 23.   x
= 1
2
 
    x = 4·  1
2
= 2

Example 5.  Fractional coefficient.

3x
4  
= y
 
     Since 4 divides on the left, it will multiply on the right:
 
3x = 4y.
 
     And since 3 multiplies on the left, it will divide on the right:
 
x = 4y
 3
Thus  3
4
 goes to the other side as its reciprocal 4
3
.
Note that  3
4
 is the coefficient of x :
3x
4
3
4
x .

Coefficients go to the other side as their reciprocals!

Problem 24.   2x
= a
 
    x = 3a
 2
Problem 25.   5
8
x = ab
 
      x = 8
5
(ab)
  Problem 26.   4
5
x  +  6 = 14
 
      4
5
x = 14 − 6 = 8
 
        x = 5
4
· 8 = 10
  Problem 27.   A = ½xB
 
         Exchange sides:  
 
  ½xB = A
 
  x = 2A
 B

The reciprocal of ½ is 2.

Problem 28.   The Celsius temperature C is related to the Fahrenheit temperature F  by this formula,

F   =   9
5
C + 32

a)   What is the Fahrenheit temperature when the Celsius temperature
a)    is 10°?

F = 9
5
· 10 + 32
 
  = 18 + 32
 
  = 50°

b)  Solve the formula for C.

Exchange sides:

9
5
C 32 = F
 
  9
5
C = F − 32
 
    C = 5
9
(F − 32)

c)  What is the Celsius temperature when the Fahrenheit temperature
c)   is 68°?

C = 5
9
(68 − 32)
 
  = 5
9
· 36
 
  = 5· 4
 
  = 20°

Next Lesson:  Word problems

Table of Contents | Home


Please make a donation to keep TheMathPage online.
Even $1 will help.


Copyright © 2001-2007 Lawrence Spector

Questions or comments?

E-mail:  themathpage@nyc.rr.com