Le lleva a la página Orden Alfabético

Le lleva a la página de Nicolás BernoulliLe lleva a la página de Boole

  Bernard Bolzano

Le lleva a la página Orden Cronológico

Le lleva a la página de PoissonLe lleva a la página de Cauchy

  Nació : 5 de Octubre 1781 en Praga, República de Checoslovaquia

Le lleva al mapa de Praga

 Falleció : 18 de Diciembre 1848 en Praga


 Bernard Bolzano, liberó al cálculo del concepto infinitesimal. También dio ejemplos de la correspondencia de las funciones 1-1.

Bolzano fue un filósofo, matemático y teólogo quien hizo significantes contribuciones tanto a las matemáticas como a la Teoría de la Ciencia, en algunos aspectos constituye un interesante precedente de la lógica matemática. En su obra póstuma "Paradojas de lo infinito" presenta conceptos que aparecen como una anticipación de la Teoría de Cantor acerca de los números transfinitos.

Bolzano ingresó a la facultad de filosofía en la Universidad de Praga en el 1796, estudió filosofía y matemática. Bolzano escribió :

Mi especial placer por las matemáticas

En metafísica Bolzano se opuso a Kant, reivindicando el carácter constructivo, y no simplemente regulativo de algunas ideas metafísicas como las relativas a Dios y a la mortalidad del alma.

Por interesantes que sean las especulaciones metafísicas y teológicas de Bolzano es hoy común acuerdo que la más importante e influyente contribución de este pensador se halla en sus ideas sobre lógica y teoría de conocimiento.

Bolzano influyó sobre muchos que intentaron depurar la lógica de todo psicologismo y fundarla en el análisis de preposiciones. Según Bolzano, la lógica tiene como misión estudiar las proposiciones como tales, es decir las proposiciones en si. Las proposiciones son enunciados mediante los cuales se declara que algo es o no es, con independencia de que sea verdadero o falso.

Bolzano, se adelantó a los analistas rigurosos del siglo XIX, a saber : en el concepto de función continua y en la demostración de sus propiedades, en el criterio de convergencia de series, y en la existencia de funciones continuas sin derivadas; pero por haber publicado sus escritos de análisis en Praga, ciudad entonces alejada de los centros científicos , o de permanecer inéditos, como su importante Teoría de Funciones, que apareció en 1930, la influencia de sus ideas fue escasa.


Le lleva a la página de bienvenida