S k i l l
 i n
A L G E B R A

Table of Contents | Home

21

NEGATIVE EXPONENTS

Power of a fraction

Section 2


Power of a fraction

 

"To raise a fraction to a power, raise the numerator
and denominator to that power."

   Example 1.  

For,  according to the meaning of the exponent, and the rule for multiplying fractions:

   Example 2.   Apply the rules of exponents:   

Solution.   We must take the 4th power of everything.  But to take a power of a power -- multiply the exponents:

Problem 1.   Apply the rules of exponents.

To see the answer, pass your mouse over the colored area.
To cover the answer again, click "Refresh" ("Reload").
Do the problem yourself first!

  a)   = x²
y²
  b)   = 8x³
27
  c)   =
  d)   =
  e)   = x² − 2x + 1
x² + 2x + 1
   Perfect Square Trinomial

Subtracting exponents

Shortly (Lesson 20), we will see the following rule for canceling:

ax
ay
= x
y

"If the numerator and denominator have a common factor,
it may be canceled."

Consider these examples of canceling:

2· 2· 2· 2· 2
     2· 2
= 2· 2· 2
___2· 2___
2· 2· 2· 2· 2
= __1__
2· 2· 2

If we write these examples with exponents, then


22
= 23

25
=  1 
23

In each case, we subtract the exponents.  But when the exponent in the denominator is larger, we write 1-over their difference.

  Example 3.   
x3
= x5
 
 
x8
=  1 
x5

Here is the rule:

Problem 2.   Simplify the following.  (Do not write a negative exponent.)

  a)   = x3   b)   x²
x5
=  1 
x3
  c)    x
x5
=  1
x4
  d)   x²
x
= x   e)   = x4   f)   =  1
x²

Problem 3.   Simplify each of the following.  Then calculate each number.

  a)   = 23 = 8   b)  
25
=  1 
23
= 1
8
  c)    2
25
=  1
24
=  1 
16
  d)  
2
= 2   e)   = −24 = −16   f)   =  1
= 1
4
   Example 4.   Simplify by reducing to lowest terms:   

Solution.   Consider each element in turn:

Problem 4.   Simplify by reducing to lowest terms.  (Do not write negative exponents.

  a)   =   y³
5x³
  b)    = 8a³
5b³
  c)   =   3z_
5x4y3
  d)    =   c³
16
 e)   (x + 1)³ (x − 1)
(x − 1)³ (x + 1)
= (x + 1)²
(x − 1)²

Negative exponents

We are now going to extend the meaning of an exponent to more than just a positive whole number.  We will do that in such a way that the usual rules of exponents will hold.  That is, we will want the following rules to hold for any numbers:  positive, negative, 0 -- even fractions!

aman = am + n   Same Base
 
(ab)n = anbn   Power of a Product
 
(am)n = amn   Power of a Power

We begin by defining a number raised to a negative exponent  to be the reciprocal of that power with a positive exponent.

an  =    1 
an

an is the reciprocal of an.

  Example 5.     2−3 =  1
23
= 1
8

The base, 2, does not change.  The negative exponent becomes positive -- in the denominator.

Example 6.   Compare the following three numbers.  That is, evaluate them:

3−2    −3−2    (−3)−2

  Answers.  3−2  =   1
32
 =  1
9

−3−2 is the negative of 3−2.  The base is still 3.

−3−2  = − 1
9

As for (−3)−2, the base here is −3:

(−3)−2 =    1   
(−3)2
= 1
9
  Example 7.   Simplify   a²
a5
.

Solution.   Since we have invented negative exponents, we can now subtract any exponents as follows:

a²
a5
= a2 − 5 = a−3

That is, we now have the following rule for any numbers m, n:

In fact, we defined  an as    1 
an
, because we want that rule

to hold. We want

= a−3

But

=  1 
a3
Therefore, we define  a−3 as   1 
a3
.
  Example 8.    a−1 = 1
a

a−1 is now a symbol for the reciprocal, or multiplicative inverse, of any number a.  It appears in the following rule (Lesson 6):

a· a−1 = 1

Problem 5.   

   a)   (log 2)(log 2)−1  =  1   b)   (x² − 7x + 5)·  (x² − 7x + 5)−1  =  1
   c)  ( 2
3
)−1   =   3
2

Example 9.   Use the rules of exponents to evaluate  (2−3· 104)−2.

 Solution.  (2−3· 104)−2 = 26· 10−8  Power of a power
 
    =
 
    =       _64_      
100,000,000

Problem 6.   Evaluate the following.

  a)   2−4  =   1 
24
 =   1
16
    b)   5−2  =   1 
52
 =   1
25
    c)   10−1  =   1 
101
 =   1
10
  d)   (−2)−3  =     1   
(−2)3
 =    1  
−8
 =  1
8
  e)   (−2)−4  =     1   
(−2)4
 =   1 
16
  f)   −2−4  =   1 
24
 =   1 
16

g)  (½)−1 =  2.   2 is the reciprocal of ½.

Problem 7.   Use the rules of exponents to evaluate the following.

   a)   10²· 10−4 = 102 − 4 = 10−2 = 1/100.
   b)   (2−3   =   2−6   =    1 
26
  =    1 
64
   c)   (3−2· 24)−2   =   34· 2−8   =   34
28
  =    81 
256
   d)   2−2· 2   =   2−2+1   =   2−1   =   1
2

Problem 8.   Rewrite without a denominator.

  a)   x²
x5
= x2−5 = x−3   b)    y
y6
= y1−6 = y−5
  c)   = x−3y−4   d)   = a−1b−6c−7
  e)   1
x
= x−1   f)    1
x3
= x−3
 g)   (x + 1)
    x
 =  (x + 1)x−1     h)   = (x + 2)−4
***

Reciprocals come in pairs.  an is the reciprocal of an.  And an is the reciprocal of an:

 1
an
= an

Together, these imply:

Factors may be shifted between the numerator and denominator
by changing the sign of the exponent.

  Example 10.   Rewrite without a denominator:   
  Answer.    = 10−3 + 5 − 2 + 4 = 104 = 10,000

Exponent 2 goes into the numerator as −2; exponent −4 goes there as +4.

Problem 9.    Rewrite without a denominator and evaluate.

 a)    2²
2−3
22 + 3  = 25 = 32   b)    10²
10−2
102 + 2  = 104 = 10,000
 c)   102 − 5 − 4 + 6  = 10−1 =  1 
10
 d)   25 − 6 + 9 − 7  = 21 = 2

Problem 10.    Rewrite with positive exponents only.

 a)    x 
y−2
= xy²   b)   =   c)   =
d)   =   e)   =

Problem 11.    Apply the rules of exponents, then rewrite with positve exponents.

a)   = =   b)   = =

Section 2


Next Lesson:  Multiplying and dividing algebraic fractions


Table of Contents | Home


Please make a donation to keep TheMathPage online.
Even $1 will help.


Copyright © 2001-2007 Lawrence Spector

Questions or comments?

E-mail:  themathpage@nyc.rr.com