Trigonometry

Proof of the reciprocal identities

Proof of the tangent and cotangent identities

Proof of the Pythagorean identities

The proof of each of those follows from the definitions of the trigonometric functions, Topic 16.

Proof of the reciprocal relations

By definition:

sin θ   =   y
r
csc θ   =   r
y

Therefore,

sin θ   =      1   
csc θ

and vice-versa.  Similarly for the remaining functions.

Proof of the tangent and cotangent identities

To prove:

tan θ  =   sin θ
cos θ
and   cot θ  =   cos θ
sin θ
.

Proof.   By definition,

tan θ  =   y
x
.

Therefore, on dividing both numerator and denominator by r,

tan θ   =   y/r
x/r
  =   sin θ
cos θ
.
 
cot θ   =      1   
tan θ
  =   cos θ
sin θ
.

These are the two identities.

Proof of the Pythagorean identities

To prove:

a) sin²θ + cos²θ   =   1
 
b) 1 + tan²θ   =   sec²θ
 
c) 1 + cot²θ   =   csc ²θ

Proof.   According to the Pythagorean theorem,

x² + y² = r².  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .(1)

Therefore, on dividing both sides by r²,

x²
r²
  +   y²
r²
  =   r²
r²
 =   1.

That is, according to the definitions,

cos²θ  +  sin²θ  =  1.

Apart from the order of the terms, this is the first Pythagorean identity, a).  To derive b), divide line (1) by x²; and to derive c), divide by y².


Trigonometric identities


The Topics | Home


Please make a donation to keep TheMathPage online.
Even $1 will help.


Copyright © 2001-2007 Lawrence Spector

Questions or comments?

E-mail:  themathpage@nyc.rr.com