Table of Contents | Home
Equivalent fractions: 2nd Level
Back to Level 1
Example 1. Write the missing numerator.
Answer. What times 4 produced 8x − 12? In other words, we must expect that 4, the denominator on the left, will be a factor on the right.
3 4 |
= |
___?__ 8x − 12 |
= |
___?___ 4(2x − 3) |
The denominator 4 has been multiplied by 2x − 3; therefore, the numerator 3 also must be multiplied by 2x − 3.
3 4 |
= |
3(2x − 3) 4(2x − 3) |
= |
6x − 9 8x − 12 |
Example 2. Write the missing numerator.
__5_ x − 3 |
= |
____?____ x² − 4x + 3 |
Answer. What times x − 3 produced x² − 4x + 3? For, we must expect that x − 3 will be a factor of x² − 4x + 3.
__5_ x − 3 |
= |
____?____ x² − 4x + 3 |
= |
_____?_____ (x − 3)(x − 1) |
x − 3 has been multiplied by x − 1; therefore, 5 also must be multiplied by x − 1:
__5_ x − 3 |
= |
__5(x − 1)__ (x − 3)(x − 1) |
= |
__5x − 5__ x² − 4x + 3 |
Problem 1. Factor the new denominator, and write the missing numerator.
a) |
2 5 |
= |
___?___ 15x + 20 |
= |
___?___ 5(3x + 4) |
= |
2(3x + 4) 5(3x + 4) |
= |
_6x + 8_ 15x + 20 |
b) |
2 x |
= |
__?__ x² − x |
= |
__ ? __ x(x − 1) |
= |
2(x − 1) x(x − 1) |
= |
2x − 2 x² − x |
c) |
_5_ 2x² |
= |
____?___ 4x3 + 6x² |
= |
__ __?_ __ 2x²(2x + 3) |
= |
5(2x + 3) 2x²(2x + 3) |
= |
10x + 15 4x3 + 6x² |
d) |
4 x |
= |
___?___ 8x² − 3x |
= |
_ __?___ x(8x − 3) |
= |
4(8x − 3) x(8x − 3) |
= |
32x − 12 8x² − 3x |
e) |
_2_ 3x4 |
= |
____?___ 6x6 + 3x4 |
= |
___ _?_ __ 3x4(2x² + 1) |
= |
_2(2x² + 1)_ 3x4(2x² + 1) |
|
|
= |
_4x² + 2_ 6x6 + 3x4 |
The following problems assumes skill with Quadratic Trinomials, Perfect Square Trinomials, and the Difference of Two Squares.
Problem 2. Factor the new denominator, and write the missing numerator.
a) |
__2__ x + 4 |
= |
____?____ x² + 6x + 8 |
= |
__ 2(x + 2)__ (x + 4)(x + 2) |
= |
__2x + 4__ x² + 6x + 8 |
b) |
x + 3 x − 2 |
= |
____?____ x² + x − 6 |
= |
__ (x + 3)²__ (x − 2)(x + 3) |
= |
x² + 6x + 9 x² + x − 6 |
c) |
__1__ x − 2 |
= |
__?__ x² − 4 |
= |
___ x + 2___ (x − 2)(x + 2) |
= |
x + 2 x² − 4 |
d) |
__x__ x + 2 |
= |
____?____ x² + 5x + 6 |
= |
__x(x + 3)__ (x + 2)(x + 3) |
= |
__x² + 3x_ x² + 5x + 6 |
e) |
x + 3 x − 1 |
= |
____?____ x² − 4x + 3 |
= |
(x + 3)(x − 3) (x − 1)(x − 3) |
= |
__x² − 9__ x² − 4x + 3 |
f) |
x − 5 x + 5 |
= |
___?__ x² − 25 |
= |
__ (x − 5)²__ (x + 5)(x − 5) |
= |
x² − 10x + 25 x² − 25 |
g) |
2x − 1 x − 5 |
= |
____?____ 2x² − 9x − 5 |
= |
(2x − 1)(2x + 1) (x − 5)(2x + 1) |
= |
__4x² − 1__ 2x² − 9x − 5 |
Problem 3. Reduce to lowest terms -- if possible.
b) |
a² + b² a³ + b³ |
= |
Not possible. a² + b² cannot be factored. |
The following problem depends on knowing that b − a is the negative of a − b. (Lesson 7.)
Problem 4. Simplify.
a) |
2 − x x − 2 |
= |
−1 |
|
b) |
x(x − 3) 3 − x |
= |
x(−1) = −x |
c) |
__1 − x_ x²(x − 1) |
= |
1 x² |
(−1) |
= |
− |
1 x² |
d) |
3x − 6 2 − x |
= |
3(x − 2) 2 − x |
= |
3(−1) |
= |
−3 |
e) |
x² − 7x + 12 4 −x |
= |
(x − 4)(x − 3) 4 −x |
= |
−1(x − 3)
| = |
3 − x |
f) |
__1 − x__ x² − 2x + 1 |
= |
___1 − x__ (x − 1)(x − 1) |
= |
−1 x − 1 |
= |
1 −(x − 1) |
= |
1 1 − x |
Next Lesson: Negative exponents
Table of Contents | Home
Please make a donation to keep TheMathPage online. Even $1 will help.
Copyright © 2001-2007 Lawrence Spector
Questions or comments?
E-mail: themathpage@nyc.rr.com
|