Definición y áreas de interés        Proyecto Salón Hogar

 

L  a  G r a n  E n c i c l o p e d i a   I l u s t r a d a  d e l   P r o y e c t o  S a l ó n  H o g a r

 

 

Funciones, sucesiones y series, numeros irracionales y más...

>>>Introducción al Álgebra>>> >>>Ecuaciones lineales>>>
>>>Exponentes>>> >>>Ecuaciones cuadráticas>>>
>>>Simplificar>>> >>>Funciones, sucesiones y series, numeros irracionales y más...>>>
>>>Polinomios>>> >>>Funciones, sucesiones y series, numeros irracionales y más...>>>

 

 

Para poder tomar los exámenes

de este tema debes estar

registrado, si no lo estás,

[Registrate aquí]

Entrar a exámenes de:

Notación

Para que sea más fácil escribir las reglas, normalmente lo hacemos así:

 

Posición del término

Es normal usar xn para los términos:
  • xn es el término
  • n es la posición de ese término
  Así que para hablar del "quinto término" sólo tienes que escribir: x5

Entonces podemos escribir la regla para {3, 5, 7, 9, ...} en forma de ecuación, así:

xn = 2n+1

Ahora, si queremos calcular el 10º término, podemos escribir:

x10 = 2n+1 = 2×10+1 = 21

¿Puedes calcular el 50º término? ¿Y el 500º?

Ahora veamos algunas sucesiones especiales y sus reglas:

Tipos de sucesiones

Sucesiones aritméticas

El ejemplo que acabamos de usar, {3,5,7,9,...}, es una sucesión aritmética (o progresión aritmética), porque la diferencia entre un término y el siguiente es una constante.

Ejemplos

1, 4, 7, 10, 13, 16, 19, 22, 25, ...
Esta sucesión tiene una diferencia de 3 entre cada dos términos.
La regla es
xn = 3n-2


 
3, 8, 13, 18, 23, 28, 33, 38, ...
Esta sucesión tiene una diferencia de 5 entre cada dos términos.
La regla es xn = 5n-2

Sucesiones geométricas

En una sucesión geométrica cada término se calcula multiplicando el anterior por un número fijo.

Ejemplos:

2, 4, 8, 16, 32, 64, 128, 256, ...
Esta sucesión tiene un factor 2 entre cada dos términos.
La regla es xn = 2n

 

3, 9, 27, 81, 243, 729, 2187, ...
Esta sucesión tiene un factor 3 entre cada dos términos.
La regla es
xn = 3n

 

4, 2, 1, 0.5, 0.25, ...
Esta sucesión tiene un factor 0.5 (un medio) entre cada dos términos.
La regla es xn = 4 × 2-n

Sucesiones especiales

Números triangulares

1, 3, 6, 10, 15, 21, 28, 36, 45, ...

Esta sucesión se genera a partir de una pauta de puntos en un triángulo.
Añadiendo otra fila de puntos y contando el total encontramos el siguiente número de la sucesión.

números triangulares

Pero es más fácil usar la regla

xn = n(n+1)/2

Ejemplo:

  • El quinto número triangular es x5 = 5(5+1)/2 = 15,
  • y el sexto es x6 = 6(6+1)/2 = 21

Números cuadrados

1, 4, 9, 16, 25, 36, 49, 64, 81, ...

El siguiente número se calcula elevando al cuadrado su posición.
 

La regla es xn = n2

Números cúbicos

1, 8, 27, 64, 125, 216, 343, 512, 729, ...

El siguiente número se calcula elevando al cubo su posición.
 

La regla es xn = n3

Números de Fibonacci

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

El siguiente número se calcula sumando los dos que están antes de él.
El 2 se calcula sumando los dos delante de él (1+1)
El 21 se calcula sumando los dos delante de él (8+13)

La regla es xn = xn-1 + xn-2

Esta regla es interesante porque depende de los valores de los términos anteriores.

Por ejemplo el 6º término se calcularía así:

x6 = x6-1 + x6-2 = x5 + x4 = 5 + 3 = 8

Series

"Sucesiones" y "series" pueden parecer la misma cosa... pero en realidad una serie es la suma de una sucesión.

Sucesión: {1,2,3,4}

Serie: 1+2+3+4 = 10

Las series se suelen escribir con el símbolo Σ que significa "súmalos todos":

suma de 1 a 4 Esto significa "suma de 1 a 4" = 10
   
suma 2n+1 Esto significa "suma los cuatro primeros términos de la sucesión 2n+1"

Que son los cuatro primeros términos de nuestro ejemplo {3,5,7,9,...} = 3+5+7+9 = 24

Sucesiones - Encontrar la regla

Para encontrar un número que falta en una sucesión, primero tienes que conocer la regla

Definición rápida de sucesión

Lee sobre sucesiones y series para conocer el tema bien, pero por ahora:

Una sucesión es un conjunto de cosas (normalmente números) que están en algún orden.

Cada número en la sucesión es un término (a veces "elemento" o "miembro"):

Encontrar números que faltan

Para calcular un número que falta primero necesitas saber la regla que sigue la sucesión.

A veces basta con mirar los números y ver el patrón.

Ejemplo: 1, 4, 9, 16, ?

Respuesta: son cuadrados (12=1, 22=4, 32=9, 42=16, ...)

Regla: xn = n2

Sucesión: 1, 4, 9, 16, 25, 36, 49, ...

¿Has visto cómo escribimos la regla con "x" y "n"?

xn significa "el término en la posición n", así que el tercer término sería x3

Y también hemos usado "n" en la fórmula, así que para el tercer término hacemos 32 = 9. Esto se puede escribir

x3 = 32 = 9

Cuando sepamos la regla, la podemos usar para calcular cualquier término, por ejemplo término 25º se calcula "poniendo dentro" 25 donde haya una n.

x25 = 252 = 625

Qué tal si vemos otro ejemplo:

Ejemplo: 3, 5, 8, 13, 21, ?

Son la suma de los dos que están delante, o sea 3 + 5 = 8, 5 + 8 = 13 y sigue así (en realidad es parte de la Sucesión de Fibonacci):

Regla: xn = xn-1 + xn-2

Sucesión: 3, 5, 8, 13, 21, 34, 55, 89, ...

¿Qué significa xn-1 aquí? Bueno, sólo significa "el término anterior" porque la posición (n-1) es uno menos que (n).

Entonces, si n es 6, será xn = x6 (el 6º término) y xn-1 = x6-1 = x5 (el 5º término)

Vamos a aplicar la regla al 6º término:

x6 = x6-1 + x6-2

x6 = x5 + x4

Ya sabemos que el 4º es 13, y que el 5º es 21, así que la respuesta es:

x6 = 21 + 13 = 34

Muy simple... sólo pon números en lugar de "n"

Muchas reglas

Uno de los problemas que hay en "encontrar el siguiente término" de una sucesión es que las matemáticas son tan potentes que siempre hay más de una regla que vale.

¿Cuál es el siguiente número de la sucesión 1, 2, 4, 7, ?

Hay (por lo menos) tres soluciones:

Solución 1: suma 1, después suma 2, 3, 4, ...

Entonces, 1+1=2, 2+2=4, 4+3=7, 7+4=11, etc...

Regla: xn = n(n-1)/2 + 1

Sucesión: 1, 2, 4, 7, 11, 16, 22, ...

(La regla parece complicada, pero funciona)

 

Solución 2: suma los dos números anteriores más 1:

Regla: xn = xn-1 + xn-2 + 1

Sucesión: 1, 2, 4, 7, 12, 20, 33, ...

 

Solución 3: suma los tres números anteriores

Regla: xn = xn-1 + xn-2 + xn-3

Sucesión: 1, 2, 4, 7, 13, 24, 44, ...

Así que tenemos tres soluciones razonables, y cada una da una sucesión diferente.

¿Cuál es la correcta? Todas son correctas.

carrera Y habrá otras soluciones.

Hey, puede ser una lista de números ganadores... así que el siguiente será... ¡cualquiera!

La regla más simple

Cuando dudes, elige la regla más simple que funcione, pero menciona también que hay otras soluciones.

Calcular diferencias

A veces ayuda encontrar diferencias entre los términos... muchas veces esto nos muestra una pauta escondida.

Aquí tienes un ejemplo sencillo:

Las diferencias siempre son 2, así que podemos adivinar que "2n" es parte de la respuesta.

Probamos 2n:

n: 1 2 3 4 5
Términos (xn): 7 9 11 13 15
2n: 2 4 6 8 10
Error: 5 5 5 5 5

La última fila nos dice que siempre nos faltan 5, así que sumamos 5 y acertamos:

Regla: xn = 2n + 5

OK, podías haber calculado "2n+5" jugando un poco con los números, pero queremos un sistema que funcione, para cuando las sucesiones sean complicadas.

Segundas diferencias

En la sucesión {1, 2, 4, 7, 11, 16, 22, ...} tenemos que calcular las diferencias...

... y después calcular las diferencias de esas diferencias (se llaman segundas diferencias), así:

En este caso las segundas diferencias son 1.

Con las segundas diferencias multiplicamos por "n2 / 2".

En nuestro caso la diferencia es 1, así que probamos n2 / 2:

n: 1 2 3 4 5
Términos (xn): 1 2 4 7 11
           
n2: 1 4 9 16 25
n2 / 2: 0.5 2 4.5 8 12.5
Error: 0.5 0 -0.5 -1 -1.5

Estamos cerca, pero nos estamos desviando en 0.5 cada vez más, así que probamos ahora: n2 / 2 - n/2

n2 / 2 - n/2: 0 1 3 6 10
Error: 1 1 1 1 1

Ahora nos sale 1 menos, así que sumamos 1:

n2 / 2 - n/2 + 1: 1 2 4 7 11
Error: 0 0 0 0 0

La fórmula n2 / 2 - n/2 + 1 se puede simplificar a n(n-1)/2 + 1

Así que, con "prueba y error" hemos conseguido descubrir la regla.

Sucesión: 1, 2, 4, 7, 11, 16, 22, 29, 37, ...

Otros tipos de sucesiones

Además de las que se explican en sucesiones y series:

  • Sucesiones aritméticas
  • Sucesiones geométricas
  • Sucesión de Fibonacci
  • Sucesiones triangulares

Ten en cuenta

  • Números primos
  • Números factoriales
  • ¡y cualquier otra sucesión que veas en tus viajes!

La verdad es que hay demasiados tipos de sucesiones para decirlos aquí, pero si hay alguno que te gustaría que digamos, sólo tienes que decírmelo.

Números irracionales

Un número irracional es un número que no se puede escribir en fracción - el decimal sigue para siempre sin repetirse.

Ejemplo: Pi es un número irracional. El valor de Pi es

3.1415926535897932384626433832795 (y más...)

Los decimales no siguen ningún patrón, y no se puede escribir ninguna fracción que tenga el valor Pi.

Números como 22/7 = 3.1428571428571... se acercan pero no son correctos.


 

Se llama irracional porque no se puede escribir en forma de razón (o fracción),
¡no porque esté loco!

Racional o irracional

Pero si un número se puede escribir en forma de fracción se le llama número racional:

Ejemplo: 9.5 se puede escribir en forma de fracción así

19/2 = 9.5

así que no es irracional (es un número racional)

Aquí tienes más ejemplos:

Números En fracción ¿Racional o
irracional?
5 5/1 Racional
1.75 7/4 Racional
.001 1/1000 Racional
√2
(raíz cuadrada de 2)
? ¡Irracional!

Ejemplo: ¿La raíz cuadrada de 2 es un número irracional?

Mi calculadora dice que la raíz de 2 es 1.4142135623730950488016887242097, ¡pero eso no es todo! De hecho sigue indefinidamente, sin que los números se repitan.

No se puede escribir una fracción que sea igual a la raíz de 2.

Así que la raíz de 2 es un número irracional

Números irracionales famosos

Pi es un número irracional famoso. Se han calculado más de un millón de cifras decimales y sigue sin repetirse. Los primeros son estos:

3.1415926535897932384626433832795 (y sigue...)

e El número e (el número de Euler) es otro número irracional famoso. Se han calculado muchas cifras decimales de e sin encontrar ningún patrón. Los primeros decimales son:

2.7182818284590452353602874713527 (y sigue...)

phi La razón de oro es un número irracional. Sus primeros dígitos son:

1.61803398874989484820... (y más...)

síbolo radical Muchas raíces cuadradas, cúbicas, etc. también son irracionales. Ejemplos:
√3 1.7320508075688772935274463415059 (etc)
√99 9.9498743710661995473447982100121 (etc)

Pero √4 = 2, y √9 = 3, así que no todas las raíces son irracionales.

Historia de los números irracionales

Aparentemente Hipaso (un estudiante de Pitágoras) descubrió los números irracionales intentando escribir la raíz de 2 en forma de fracción (se cree que usando geometría). Pero en su lugar demostró que no se puede escribir como fracción, así que es irracional.

Pero Pitágoras no podía aceptar que existieran números irracionales, porque creía que todos los números tienen valores perfectos. Como no pudo demostrar que los "números irracionales" de Hipaso no existían, ¡tiraron a Hipaso por la borda y se ahogó!

Grado (de una expresión)

El "grado" se llama a veces "orden"

Grado de un polinomio (una variable)

El grado de un polinomio con una sola variable (como x) es el exponente más grande de la variable.

Ejemplos:

4x El grado es 1 (una variable sin exponente tiene de hecho exponente 1)
   
El grado es 3 (el mayor exponente de x)
   
El grado es 5 (el mayor exponente de x)
   
El grado es 2 (el mayor exponente de z)

Grado de un polinomio (más de una variable)

Si hay más de una variable en el polinomio, tienes que mirar cada término (los términos se separan con signos + o -):

  • Calcula el grado de cada término haciendo la suma de los exponentes de las variables que tenga,
  • El mayor de esos grados es el grado del polinomio.

Ejemplo: cuál es el grado de este polinomio:

polinomio

  • 5xy2 tiene grado 3 (x tiene exponente 1, y tiene 2, y 1+2=3)
  • 3x tiene grado 1 (x tiene exponente 1)
  • 5y3 tiene grado 3 (y tiene exponente 3)
  • 3 tiene grado 0 (no hay variables)

El mayor es 3, así que el polinomio tiene grado 3

Nombres de los grados

¡Cuando conoces el grado también puedes darle un nombre!

0 constante
1 lineal
2 cuadrático
3 cúbico
4 cuártico
5 quíntico

 
Ejemplo: 5xy2 - 3 tiene grado 2, así que es cuadrático

Cuando una expresión es una fracción

Puedes calcular el grado de una expresión racional (una que tenga la forma de una fracción) calculando el grado de arriba (numerador) y restando el grado de abajo (denominador).

Aquí tienes tres ejemplos:

Calculando otros tipos de expresiones

Aviso: ¡Ideas avanzadas en adelante!

A veces puedes calcular el grado de una expresión con una división...

  • el logaritmo de la función entre
  • el logaritmo de la variable

... para valores más y más grandes, para ver hacia donde "va" el grado.

(Más correctamente, deberías evaluar el límite a infinito de log(f(x))/log(x), pero quería mantener las cosas simples).

Aquí tienes un ejemplo:

Ejemplo: ¿Cuál es el grado de (3 más la raíz cuadrada de x)?

Vamos a tomar valores de x más y más grandes:

x log() log(x) log()
/log(x)
2 1.48483 0.69315 2.1422
4 1.60944 1.38629 1.1610
10 1.81845 2.30259 0.7897
100 2.56495 4.60517 0.5570
1,000 3.54451 6.90776 0.5131
10,000 4.63473 9.21034 0.5032
100,000 5.76590 11.51293 0.5008
1,000,000 6.91075 13.81551 0.5002

Mirando la tabla:

  • cuando x crece log() / log(x) se acerca más y más a 0.5

Así que el grado es 0.5 (o lo que es lo mismo 1/2)

(Nota: esto coincide bien con x½ = raíz cuadrada de x, lee exponentes fraccionarios)

Algunos valores del grado

Expresión Grado
log(x) 0
ex
1/x -1
1/2

 

Para poder tomar los exámenes

de este tema debes estar

registrado, si no lo estás,

[Registrate aquí]

 

Fundación Educativa Héctor A. García